An introduction to Bird Survey and Census Techniques

Survey methods

Species lists to distribution studies
Simple species lists

Advantages
- Species present
- Simple
- Locate threatened species
- No complicated analysis

Disadvantages
- No account of effort
- Can’t compare easily between surveys
- Can’t compare easily between sites
- Does not assess abundance
Using species discovery curves

Species discovery curves

- e.g. curves for three different habitats
Species discovery curves

Advantages
- Assess completeness of list
- Assess total number of species
- Compare richness of different sites

Disadvantages
- Requires careful analysis of data
- Does not assess abundance
Bird surveys – *advanced methods*

- Capture-recapture
- Catch per unit effort
- Radio tracking
- Play-back methods
- Distribution studies
Capture-mark-recapture

Advantages
- Temporary or permanent marks can be used
- Estimate population size
- Track changes in population size

Disadvantages
- Requires careful analysis
- Time consuming
- Requires specialised equipment and training
- Might influence bird behaviour?
Catch per unit effort

Advantages
- Standardised effort
- Detects secretive understorey
- Birds
- Index of relative abundance
- Track population size
- Rigorous

Disadvantages
- Requires careful analysis
- Very time consuming
- Requires specialised equipment and training
Radio tracking

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determine home ranges</td>
<td>• Requires careful analysis</td>
</tr>
<tr>
<td>Determines time budgets</td>
<td>• Time consuming</td>
</tr>
<tr>
<td>Determines habitat selection at a fine scale</td>
<td>• Requires specialised equipment and training</td>
</tr>
<tr>
<td></td>
<td>• Might influence bird behaviour?</td>
</tr>
</tbody>
</table>
Play-back methods

Advantages

- Simple use of tape playback to detect birds
- Estimate population size
- Track changes in population size

Disadvantages

- Requires careful design
- Time consuming
- Requires specialised equipment
- Might influence natural behaviour
Distribution Studies

Single-species studies

- Focus on a high priority species
- Use prior knowledge to define study area
- Rapidly assess species’ range (and estimate population size)
- Repeat surveys to show distributional change through time
Habitat-scale studies

- Relate bird distribution to habitat distribution
- Can assess habitat preference and avoidance
- Can be used to assess and refine management practices
 - Understand relationships between birds and habitats
 - Predict distribution and numbers in un-surveyed areas
 - Predict possible consequences of future land use change
Line transects vs. Point counts

- Walk predefined route at a consistent speed
- Record all birds within a fixed distance on either side of the route
- Walk to predefined spots
- Allow time for birds to settle
- Record all birds around the spot for set time (2-20 minutes)

Points to consider for selecting and designing survey method

- Selection & location of routes
- Number of visits to each sample route
- Walking speed or length of time spent at each point
- Recording units for birds (age, sex, activity e.g. calling, feeding, flocking, roosting)
- Measuring distances – along route or determining the distance of birds from point
- Observer bias – measures to minimise bias
Background information needs for methods

- Detailed & clear instructions for the fieldworker
- Map of the area, with the boundaries outlined
- Identification information
- Clear & easily defined habitat codes
- Covering letter for landowners
Site / Route selection

Line Transect

Selecting sites at random

Selecting line transects:
- Systematic
- Random
- Random stratified

Point Count

Selecting sites at random

Selecting points:
- Systematic
- Random
- Random stratified
Habitat codes

- Use preset codes, so all fieldworkers are recording habitat in the same way. Codes can be included on datasheet to assist observers in the field.

- Codes can be at different levels (“hierarchical”) – this gives the most information e.g. Habitat can be recorded:
 - where each bird is found
 - at regular points or along transect sections throughout the area
 - as a proportion of the whole area

- Codes are flexible: devise codes to answer your specific questions e.g. If we are interested in a farmland bird, increase number of farmland codes to increase level of detail and reduce the number of other habitat codes since we are less interested in them.
Point counts vs Line transects

Strengths & weaknesses of point transects
- Time to spot and identify shy and cryptic birds
- Adaptable to species and habitats
- Double counting is a concern
- Time is ‘lost’ moving between points
- Good for habitat studies

Strengths & weaknesses of line transects
- Cover ground quickly recording many birds
- Adaptable to species and habitats
- Double counting a minor problem
- Adequate for habitat studies
Data Analysis – bird density

Calculating densities - strip transects

\[N = \text{number of birds seen} \]

\[\text{Density} = \frac{N}{2WL} \]

Example:

\[L = 1\text{km}, \quad W = 100\text{m}, \quad N = 100 \]

\[500 \text{ bird per km}^2 = 100 + 2 \times 1 \times 0.1 \]
Distance Sampling

- All birds cannot be reliably detected over all distances - number of birds seen from a point must decline with distance....
- This decline in detection will be different for different species in different habitats
- Ideally, one would measure the distance to each individual sighting without error
- Often this is impractical so distance bands are used.
How distance bands work

Effective Strip Width = Distance at which as many birds are missed within it as are seen beyond it

****Density = N / 2 EL****
Benefits of Distance Sampling

- Efficient way to estimate bird density
- Provides a measure of bird ‘detectability’
- Allows for differences in levels of ‘conspicuousness’ or ‘detectability’ between habitats
- Allows for the fact that some birds are more detectable over greater distance
- Allows for species to be more detectable in one habitat than another
- Allows for comparisons between species, and within species, across different habitats

Good density estimates require

- 60-80 bird records for line transects:
- 80-100 bird records for point transects
Assumptions of distance sampling methods

- Transects are placed in a manner that is representative of the habitat
- Birds on the line, or on the point, are always detected
- Distances are measured without error
- Birds do not move in response to the observer
- There is no double counting of birds
Some sources of information